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OPTIMAL LINEAR APPROXIMATION IN PROJECT COMPRESSION

S.E. Elmaghraby and A.M. Salem

North Carolina State University
Raleigh, N.C. 27650

ABSTRACT

When the cost of reducing the duration of activities is convex

and nonlinear, it may be advisable (to reduce the computing burden)

to seek a "satisfising" answer, in which the project is "compressed"

to a desired completion time with prespecified tolerable relative

error. We treat the problem of constructing the optimal first degree

interpolating linear spline that guarantees such maximal error, and

consider various possible refinements.
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OPTIMAL LINEAR APPROXImATION

IN PROJECT COMPRESSION

S. E. Elmaghraby and A. M. Salem
North Carolina State University

Raleigh, NC

INTRODUCTION

A significant recent trend in the study of activity networks

(ANs) is the shifting of focus from insisting on achieving the opti-

mum to requiring only approximations that deviate from the exact

results by a known (perhaps predetermined) error; i.e., satisfising

instead of optimizing. In the overwhelming majority of cases,

asking for an approximation is more realistic than demanding the

exact answer because of the very approximate nature of the input

data.

It is a truism that project compression under linear or piece-

wise linear cost functions of the form C(y) = b - ay; i < y < u;

a,b > 0 is considerably easier to resolve optimally than under

nonlinear cost functions. The analysis of [ 2] and [ 31, carried

under the simplifying assumption of quadratic cost functions, should

amply demonstrate this fact, if such demonstration were needed! The

natural question then is: What if C(y) is not quadratic, though

still convex decreasing as y increases from Z to u? For instance,

suppose

I -'"
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C(y) = a/(b + ry) ; 0 < 9 < y < u < c; a,b,r > 0 (1)

What can be said about the optimum in this case?

One may wish to persist in applying the theoretical con-

structs of C 2 ] and [ 3 1, which are indeed applicable in toto.

Unfortunately, the Kilter Diagram (which is simply the plot of the

derivative, -dC/dy versus the duration y) will now possess a nonlinear

segment in region R, as shown in Fig. 1 for C(y) of (1), which would

necessitate the solution of a system of nonlinear equations in the

Figure 1 approximately here

"flows" {f.. I at each iteration; an onerous task at best.

The other alternative is to approximate the cost function

C(y) by a continuous piecewise linear and convex function (i.e.,

linear spline) that is "optimal" in some sense. There are two

immediate questions that present themselves: The first is to

define the criterion of optimality of the approximation, and the

second is to define the sense of the approximation itself.

This paper answers these two questions, then proceeds to demonstrate

the application of these answers to achieve the desired approxima-

tion.

Although our discussion is couched throughout in the ver-

nacular of ANs, the approach has broad applicability to a wide class

of convex separable programming problems.

t
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THE CRITERION

Let C(y) be a nonlinear convex decreasing function on [X, u].

Let the points yo,y, . . Yn+l satisfy Z = y0 < y 1 < . . . <Yn

< yn+l = u and let ci, 1 < i < n + 1 be arbitrary real numbers.

Define

h(y) = c 1 + (c - c i 1)(y - yi -
)  (2)

for yc[yiYi] , 1< i < n + 1

Then h is a continuous piecewise linear function called a first

degree spline with knots {yi} , 0 < i < n + 1 that joins the points

(yi, ci), 0 < i < n + 1. Since the knots y. and yn~l are fixed, the

problem is to choose the (variable) knots yly 2, . 'yn and the

ordinates c0,cl, . . . ,cn+1 so that the corresponding spline h is

as close to C as possible in the sense of the uniform norm; that is,

we choose h to minimize the maximum error:

min: c = max IC(y) - h(y)I

ye [1, u]

= IIc - h ()

where h is a first degree spline with n-1 variable knots in the

interval [1, ul. If such an h exists, it is called a best

Chebychev (uniform, minimax) variable knot first degree spline (FDS)

approximation to C on [I, u]. The value of c is called the error

or deviation of the approximation h.

I,
*.- >
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Traditionally in spline approximation the values at the knots

satisfy

c. C(yi) , 0< i < n + 1 (4)

In this case, h is called a first degr:e interpolating spline (FDIS).

If a spline h exists which minimizes (3) and satisfies (4), we call

h a best Chebychev variable knot interpolating spline approximation

to C on [k, u]. If we relax the restriction that c. = C(yi),

0 < i < n + 1, then we call h a best Chehychev first degree approxi-

mating spline (FDAS) with variable knots. Three important facts

that are known about optimal Chebychev splines are worth recalling

because of their relevance to our subsequent development:

I. The errors in all segments of the approximation are

equal [ 5.

2. The maximum error in FDIS is exactly twice that in FDAS,

which yields the least error.

3. For purposes of optimization, we may use any linear spline

approximation that differs from the FDAS by a constant

(the so-called "simple linear translation") [ 4.

Consequently we shall deal exclusively with FDIS. This choice

will become even the more advisable as our discussion progresses.

In ref. [ 6] Salem gives elementary constructions, both

graphical and analytical, for the determination of the optimal FDIS

(and FDAS) that guarantee an error of value c. (As a consequence,

the number of knots is variable.) For our purposes, we briefly state

1 '- i = -. i i ii.. ..



the concepts underlying his graphical approach to the determination

of the FDIS. The reader should have no difficulty in constructing the

analytical procedure, which follows the graphical construction rather

faithfully, and is stated in full detail in [ 6]. (In fact, we do

just that for the specialized cost function in the example below.)

Suppose that C(y) is plotted to some reasonable scale, as

shown in Fig. 2. From the left-most point (1; C(t)), drop an c and

Figure 2 approximately here

draw a tangent to the function C(y); and .?rum the point (1; C(t)),

draw a parallel line to that tangent to intersect C(y) at the point

(ylC(yl)). This is the first segment of the FDIS. The construc-

tion is now repeated starting with the point (y ,C(y )); and is

stopped when the upper limit u is reached. This "last segment" of

the linear spline bears close scrutiny, since it may lead to further

improvement in the approximation. We shall do this later, but for

the moment it should be evident that the above construction yields

a FDIS whose maximum deviation from C(y) is at most c. (The maximum

deviation in the last segment may be strictly < c.)

THE SENSE OF APPROXIHATION

Our concern is next focused on defining the sense of approxi-

mation that is appropriate for our application, and on determining

the values Eij; (ij)cA, that realize it.'1J

Recall that the problem of optimal project compression may

be stated mathematically as (see, e.g., ref. [1 1):

*
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Program P: Minimize C(y) = C..(Yij) (5)

(ij>(i j)cA

Subject to t. - t. + y. 0 ; (ij)cA (6.1)

t +tn T (6.2)

i - i -< uiJ (6.3)

Because of the difficulty in a frontal attack on Program P because

of the nonlinearity of the objective function, we propose to approach

it through approximating each individual C..(Y ) by a FDIS, denoted

by hij(yij). Thus we define the following surrogate program:

Program S: Minimize H(Y) = h. (y..) (7)
(ij)cA

Subject to: (6.1) - (6.3)

Let v(P) and v(S) denote the minima of their respective programs.

There are two possible criteria that measure the "goodness" of this

approximation:

Criterion 1: Find ci , (ij)cA, such that the absolute deviation from

the exact optimum is bounded by 6:

Iv(S) -v(P)J <6 ; >0 (8)

Criterion 2: Find ci-, (ij)EA, such that the relative deviation from

* the exact optimum is bounded byw

* Iv(S) - v(p)!/!v(P)f < ; w > 0 , Jv(P)J > n (n)

.1
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In (8), the scalar 6 is an "absolute" measure since it has

the same dimension as the function C (say dollars), while the scalar

w of (9) is dimensionless since it represents the ratio of the (abso-

lute) error of approximation to the minimal value of program P;

typically we[.01, .10]. Clearly, Criterion 1 is useful when the

analyst has a fairly precise idea about the value of v(P) on which

he can base the value of 6. Criterion 2, on the other hand, is free

of such prior knowledge, since it requires only the specification of

a tolerable relative deviation from the optimum of program P (a

"satisfising" relative error) whatever that value may be.

Consider Criterion 1: We wish to find c.. such that13

Iv(S) - v(P)j = v(S) - v(P) < 6

The reader will now realize the added rationale for choosing tile

FDIS, which enables us to replace the absolute difference by the

straight difference, since h. (y.j) > C. (y. ) for £ij < y. < u.

v(S) = h.- h-j(iJ) > ij Ci .(y.) > "". (yiJ) = v(P), where
(13) 1 13-1 (ii)13 3

Y and Y* are the optimizing vectors for Programs S and P, respectively.

But

4v(S) - v(P) = min Z hij(yij) - min ij(Yij)

where a2 is the space of feasible solutions defined by (6.1) - (6.3).

If the optimum of program S is realized at ?, and the optimum of

.. .I " I I l
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program P is realized at Y*, then for each activity (ij) the contri-

bution to the difference is hi(yi.) - C ij(yij), which is obviously

< E... Consequently, we conclude that
- 13

Iv(s) - v(P)l < I / , 6ijI < Iijl

(ij) (ij)

Theretore, by taking E.. = 6/m inequality (8) will be satisfied,

where m is the number of activities in the network, m = JAI.

Next, consider Criterion 2, which is the one adopted hence-

forth. By construction of the FDIS,

hij (yi) - Cij (yij) < i

Summing overall (ij)sA,

h iD(Y ij ) < 'L C ij(Y ij Z +  E ij"

Minimizing both sides of the inequality results in

v(S) < v(P) + Z Eij (10)

which we rewrite as

v(S)/v(P) < 1 + Z../v(P) ; v(P) > 0 (10')

Actually, E ij should be written (c j w), and v(S) should be written

(v(S)I(F j}), since c. is indeed a function of w, and v(S) is a

* function of the errors {cij .} We forfeit such rigor of expression

for the sake of clarity of exposition.

*-q'
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From the statement of Criterion 2, we have

v(S)/v(P) < 1 + w (11)

Equating the r.s. of (10) and (11), and assuming for simplicity (see

below) that c.. = e, the same value for all activities, we conclude
13

that

e< W.v(P)/m ; m= JAI

Since the value of v(P) is not known, any lower bound on that value

will yield a more "conservative" c. Such a lower bound is immediately

available in / Ci(uj), and we put

(ij)

E = W.C(U)/m < W.v(P)/m (12)

where C(U) = ,Ci(uij). This is the c to be used in the deter-

(ij)

mination of the Chebychev-optimal FDIS.

Once the approximate problem S is solved and the values

and v(S) are in hand, one may obtain the a posteriori bounds

v(S) - 7 .Cij< v(P) < C(Y ) (13)

(ij)

.4 The right inequality is evident from the fact that " is a feasible

point of P; the left inequality follows frem (10).
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Two Issues

Thus far we have left two questions unanswered; they are:

(i) How does one cope with the last segment of the linear spline if

it generates an error less than c, and how does one use such a fact

to refine the approximation? (ii) How would one proceed if one

desires to weigh the various activities differently, as reflected

in the permissible error c..?'3

Rather than clutte- this paper with a mass of symbolism and

formulas that will undoubtedly mask the rather elementary nature of

the response to these two issues, we prefer to respond within the

context of a numerical example that is deliberately chosen for its

simplicity and tractability. The reader should have no difficulty

in extrapolating to more complex functions. Indeed, many of our

formulas developed for this simple example are directly applicable

to others, as we shall demonstrate.

NUERICAL EXAMPLE

Perhaps the simplest nonlinear convex decreasing cost function

is a quadratic with continuous derivative over [0, -] of the form

2a + O(u - y)2. Consider a project network with such activity cost

and other data given in Table I and Fig. 3.

"4

STable I approximately here
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Figure 3 approximately here

This problem was solved optimally by the methods of [ ]; the

optimal compression function is shown in Fig. 4.

Figure 4 approximately here

Now it is desired, for purposes of illustration, to solve the

problem by approximating the cost function C ij(yij) = ij + ij (ui -
2

yij) using the algorithm for finding the best FDIS. The error e

is to be chosen to guarantee that the optimum value of the approxi-

mating program does not deviate from the optimum value of the original

problem by more than 10% of the true optimum, i.e., we are adopting

Criterion 2 with w = 0.10.

It is easy to see that the graphical construction of Fig. 2

can be translated into the following analytical steps:

1. Determine y (the point of maximum error in the kth segment of

thc approximation) from

[(k) + c _ (k-l -k _k-l -k
[C( k ) -c(yk-)]/[y - yk = C,fk) ;

k = 1,2, . . (14)

k 2
"4 where CI( k) = dC/dyI _ -k. For the case C(y) = + 8(u - y),

the above expression yields

S

t

.1
: . d .. ... .
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-k k-i 0
Y = y + ¢-f7 ; yO (14')

k-i k.
and the slope of the line segment between y and y is given

by

c'( k) = -26(u - yk- _ g7) (15)

2. Determine yk (the end point of the kth segment) from

[C(yk) _ C(yk-I)]/[yk _ k- I = CI( k) (16)

For the above quadratic, this yields

k k-i (16')

Finally, using (12) with w = 0.10, m = 5 and C(U) = 11 (=Zai.)

we have c = 0.220.

Substituting for this value of e and the other network parame-

ters, we immediately deduce the linear splines given in Table 2.

Table 2 approximately here

To help interpret this table, consider arc (2,3): The spline

has four segments as shown in Fig. 5, with the given knots and slopes.

The variable Y2, 3 is now replaced by the four variables x12 , x13, x14

and xls, whose coefficients in the (linear) criterion are precisely

the corresponding "slopes" of Fig. 5.

I,

I' - - ° ,t
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Figure 5 approximately here

Program P in the original variables {y..} is now translated

into the approximating linear Program S:

Minimize It(Ts) - 93 - 7.062 x1 - 5.187 x2 - 3.310 x

-1.434 x4 - .25 x5 - .9062 x6 - 7.186 x

- 5.310 x8 - 3.434 x 1.560 xl0 - .323 x

- 5.062 x12 - 3.186 x13 - 1.310 X14

- .188 x15  7.062 x16 - 5.187 x17

- 3.310 x18 - 1.434 x- .25 x20

- 7.062 x21 - 5.187 x22 - 3.310 x23

- 1.434 x24 - .25 x25

Subject to:

t 1 -t 2 + x1 + x2 + x3 + x4 + x5  < 0

t -t + x + x + x + x + x + X < 01 3 6 7 8 9 10 11-

S2 - 3 + x12 + x13 + 14 x15 < 0

t2 + x 16 + x 17 + x18 + x19 + x 20  < T ( t4)

t3  x 2 1  22 23 24 x 25  Ts

x + x + x + x +x < 4
1 2 3 4 5-

x6  x7 + x 8 + x9 + X 10 + X 11-

I'.. ... ..
, / . .. .. I I - I
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X 12 13 + X S x i 3

x16  x 17  1 8  x19 2 0 -<4

x21 + x22 + x23 + x24 + x2 < 4

x5 < .248; x 1< .31; x < .186; x20 < .248; x25 < .248, and

x < .938, for all other i; x > 0, fcr all 1.

This LP was solved for the three values of T given by thes

"breakpoints" in the optimal compression function of Fig. 4, namely

T = 8, 6.75 and 4. The results are given in Table 3, which contains

one additional result for comparison, namely the column labeled L (T).

Table 3 approximately here

This column gives the optimal solution tinder the "crude" linear

approximation of each function by the single line segment joining

the two end points of Cij (y.j) (see, e.g., Fig. 5). The values of

the absolute error between the "true" and "approximate" optima are

given in column 5; and their relative magnitudes (to the "true"

optima) are given in the last column. The latter are seen to be well

within the 0.10 specified tolerable error. Their small values are a

reflection of the conservatism induced by having bared the value of

* E on the lower bound C(U); see Eq. (12).
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Table 3 contains one additional piece of information, namely

the a posteriori hounds on the optimum C (y); see Eq. (13). The

hounds are rather good, and they do indeed contain the "true" value.

It is also instructive to compare the optimal activity dura-

tions under the three representations of C ij(yij): The original

quadratic function, the FDIS, and the "crude" linear approximation.

This is given in Table 4. It is evident that the differences among

the activity durations remain significant throughout the ranges of

T between the "Quadr." and "Linear Spline" on one hand and the5

"Crude Linear" on the other, with the difference between the first

two being rather small.

Table 4 approximately here

We are now ready to respond to the two issues raised above.

The Last Segment and Improved Approximation

First, there is the question of the "last linear segment" of

the spline that terminates at u. A glance at Fig. 5, for example,

and some simple calculations reveal that this last segment (in the

interval (2.814, 3]) has a maximum error of only .008649, a far cry

t The fourth column under each T., labeled "Improved Linear Spline",

w
will be explained below.
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from the allowable value of c = 0.220. Consequently, we may obtain

a smaller error c throughout the range of y if we insist on adding

one more restriction to the FDIS; namely, that it terminates on the

function C. (y. ) at both 4.. and u.. while utilizing the same number
ii 13 - 13- 1 -

of knots. The existence of such spline is guaranteed by the finite-

ness of the range of yij's.

Fortunately, for the quadratic cost function adopted in this

example, the analytical determination of the optimum FDIS satisfying

this additional condition is rather elementary. (This was another

reason for the adoption of this particular cost function.)

0 1Consider the first segment of the FDIS between y and y . It

is easy to see that (see Fig. 3):

I = (1 )C ( -l 0 [C C W

.y) _ c ) (yl _ yo) _ [cffy) - C(y )]

0
v = 2 (17)

But, since C(y) = a + 0(u - y)2, we have

C(y ) - :(v 0 ) = 0~y 1 y0(2 1

C I C 8(y 0W - Y )(2t, - y -y)

and similarly,

C(7 _C(y°) 0(y' -1) (2u- -

~1
Substituting in the expression for c , we obtain

I = S(y ° - -( - l

I
_ ~~~- -"...
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-l
But Y is the point at which the tangent to C(y) is parallel to the

line segment; i.e.,

dC(y) - - 2(u - -l) = C(y 1 ) - C(y )

1y=y y yO

- (2u - y 0  y 1) (18)

yielding the relation between 1 and y (recall that y is fixed

at Z):

-1 0~ 1,y (y )/2

Consequently,

1 yl .ygO2

= ( 2 )

By a similar argument, we can easily deduce that, in general,

k k-i
C k (X.y) 2  k = 2,3, . ,n+l

k
Now we impose the desired conditions, which are three: (i) C =,

0 n+l
a constant for all k; (ii) y = £; and (iii) y = u. They com-

pletely determine the value of c. We proceed recursively:

1 P,2

2 y =2 / + X

C2 £ 2 - Y 1 2 2 1
2 => Y = 2 IwFf0 + y

-2 x 2 Acla+ i

*

1I I' I II II II III I
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k k-i
and in general £k 2 hk 2 k= 2 y=kx2€7

n+l
Finally, we have y = u = (n+l) x 2 /U + X

which yields

B-u - 1,.2

= [ j (19)

This is the new value of c to be used in the construction of the

FDIS for this activity. Note that now the maximum error of approxi-

mation may be different for different activities.

To illustrate, consider once more activity (2,3) of Table I

and Fig. 5: We have n = 3 knots, 8 = 1, u = 3 and 2, = 0; hence

= (3/8)2 = 9/64 -- 0.140625 (compare with the previous value of

c = 0.220). With this value of t, straightforward substitution in

LEqs. (14), (15) and (16) yields the following Table 5:

Table 5 approximately here

The new knots and slopes for the various I1)lq's of the proJect

of Table I art- given in Table 0. Of course, the number of x-variables

for each activity remains the same as before, though their ranges and

coefficients in the linear criterion are now different. The new

* Table 0 approximately here
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program, denoted by S, was solved for the same three values of Ts

as before, namely, T = 8, 6.75 and 4.00, and the optimum values are

summarized in Table 7, together with the corresponding values for

the "true" optimum and for the "original" FDIS. As to be expected,

the absolute and relative errors are smaller than before. Moreover,

the bounds on the optimum (also given in Table 7) are much sharper.

(For comparison, see Table 3.) The optimum durations of the activi-

ties at these various target completion times have been included in

Table 4 to facilitate comparison with other conditions.

Table 7 approximately here

The development thus far responds completely to the question

raised concerning the "last segment of the FDIS" when the individual

activity cost function is convex decreasing, quadratic and with

continuous derivative for yc[Z,-]. Extension of the approach to

quadratic cost functions that possess discontinuous derivative at

y = u (the case treated in ref. [2 ]) is straightforward and will not

be elaborated upon here.

Such is not the case, however, for general cost functions

that are convex decreasing in the interval [k, u], such as the

function C(y) of (1). The reason is that now we may have to deal

with nonlinear equations to determine the new value of ^, though the

*: logic of derivation implied by Eqs. (17) and (18) remains applicable

in toto. In such instances, the application of simple iterative
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schemes yields the desired result in a few iterations. Indeed,

bounds on the locations of the new knots {y k1 are easily deter-Y k=lareaiydt-

mined by applying the graphical (or analytical) construction of

Eqs. (14)-(16) starting from the point (u,C(u)) rather than the

point (Z,C(t)).

The concepts of iteration are best illustrated by example.

Consider again the simple network of Fig. 3, and suppose that the

activity cost functions are given by Eq. (1). Elementary calcula-

tions (see also ref. [6 1, pp. 219-225) following the logic of

Eqs. (14)-(16) yield:

c( k) + C( yk -l)  CI( k) = mk

k k-i

Substituting for C(y) = a/(b + ry) in the above equation yields

A-k k-a/(b + ry + c- a/(b +ry ) -ar/(b + ry)
Y - y

or

k-i k 2 k[c - a/(b + ry ](b + ry + a/(b r )

S-ar (Yk yk-i

This is a quadratic in (b + ryk ) whose solution yields

-k 2r-lk _ i 1 /2

y = [- a- a2 + a(b + ryk )(c - a/(b + ry

k-i~~r(c - a/(b + ryk-) b/r

(choosing the root that yields k > Vk-).1
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Determine

km C'(y)y=Y-k - ar/(b + ry k 2

k
and compute y from

y = _ (ar + mkb (b + ryk-l ))Mkr (b + ry )

If yk > u stop and the last segment of the FDIS joins C(y
k-l)

C(y n ) and C(u), i.e., put yn+l = u.

To illustrate, assume the parameters are as given in Table 8,

which is constructed so that the cost function satisfies the (rea-

sonable) condition that would permit comparison later on with

previous results, namely, that C(y) passes by the points C(k) and

2
C(u) of the quadratic cost function, a + a(u - y) . It is easy to

see that the cost function C(y) = a/(b + ry) may be written, for

simplicity, as C(y) = a'/(l + r'y) when both numerator and denominator

are divided by b. Since k.. = 0 and I = 1 for all activities in this

example, this condition yields:

a' = C(O) and r' 1 C(O) I], resulting in
U C-u)

a =C(O) ; b= ; r=u (19)

Table 8 approximately here

9

.1
II IllII I I~~~~- C---. -r v• • m



i m ;S . __

22

For notational simplicity, we refer to the knots and errors

that result from starting the spline at the point (t,C(t)) as result-

ing from forward iteration, and to the knots and errors that result

from starting the spline at the point (u,C(u)) as resulting from

backward iteration.

For illustration, consider once more activity (2,3):

2
CQ(y) = 1 + (3 - Y2, 3 ) 2 , which yields (see (19) above) C(y)

10/(1 + 3y). Forward iteration is started with the original error

of C0 = 0.22, which results in five segments as shown in Table 9.

(Compare with only four segments of the quadratic cost function.)

Table 9 approximately here

Two remarks are relevant to Table 9. First, the unrestricted

last segment of the FDIS "overshoots" the upper bound on the activity

duration by a considerable amount. Therefore, it must be truncated,

resulting in a much smaller error than 0'

Second, it is rather easy at this juncture to derive bounds

on the locations of the knots through backward iteration [i.e., start-

ing with spline at the point (u,C(u)) and proceeding "backwards" to

the point (2,C(9.))]. This is accomplished in Table 10 for the same

value of 0 = 0.22.
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Table 10 approximately here

The bounds on the location of the improved knots are shown in Fig. 6.

Figure 6 approximately here

The easiest iterative scheme is to put the new value of the error cI

equal to the average error in the previous iteration. Therefore,

put E = I c0 /5 = 0.192372. The result is an improved spline
k

(still of five segments) as shown in Table 11.

Table 11 approximately here
I

We iterate once more with 2= E, 5 0.187169, and obtain the
k

values shown in Table 12.

N

A

tAlternative schemes, such as choosing the end-points of the

just-determined intervals of the knots, were not systematically

investigated.

,*

?-
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Table 12 approximately here

The deviation from E2 in the last segment is 0.000755 or approxi-

mately 0.4%, and iteration may very well stop here. (In a computer

program, one would pre-specify an "acceptable" deviation in the error

at which iteration is terminated.) We decided to do one more itera-

tion with ES = E/5 0.187018. The results are shown in Table 13.
k

Table 13 approximately here

To be sure, the final knots are within their respective bounds estab-

lished by the forward and backward iterations; see Fig. 6. (For
1 y2

example, y = .113978c[0.069616, 0.126214), y= 0.298232C[0.241950,

0.340470], etc.)

The complete (improved) FDIS's for all five activities are

given in Table 14, obtained by similar (forward) iterations over the

values of the error c... To be sure, the final errors achieved are13

all smaller than the starting error of c0 = 0.22, and the), differ

from activity to activity. The optimal solutions at the three

"breakpoints" are given in Table 15, together with the respective

A
bounds on the "true" optimum values based on them and on the value

L_, a.. = 0.920068.
(ii) t

9t
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Table 14 approximately here

Table 15 approximately here

The following remarks are pertinent.

It is evident that the cost of project compression is quite

sensitive to the form of the assumed activity time-cost trade-off

function, contrary to the common lore. For instance , at T = 6.75,5

the cost of the project varies from a low of 13.84 for the FDIS to

the (steeply) convex cost function of (1); to 17.44 for the quadratic

convex cost function a + 8(u - y)2; to 17.70 for the FDIS to it; to

17.85 for its "improved" FDIS; to, finally, 27.25 for the "crude"

linear approximation!

Though we have not conducted the requisite empirical investi-

gation, it is our belief, on the basis of limited evidence, that the

ratio of cost between the "crude" linear approximation and that of

Eq. (1) will be significant ( > 1.25). (Of course, this depends on

the amount of compression required. In the above example, the dura-

tion was reduced by approximately 40%.)

The Differential Weighting of Activities

We remind the reader that this is the second question raised

under "Issues" above. It is possible, in some application, that

, 4

I

: ,,t .- " .-
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large errors will be tolerated in some activities but not in others.

This differentiation among activities may be implemented by specify-

ing a "tolerable" ratio between any pair of errors. This will

introduce a slight modification to the development of Eqs. (10)

through (12). In particular, we now write ci = c, a.. > 1 and

let A = , a... Then we have
(ij) '"

v(S)/v(P) < 1 + Ac/v(p) ; v(P) > 0

which results in

c < w.C(1I)/A and c.. : a..E (20)

where, as before, C(UJ) : _ Cij (uij).
(ij)

As illustration, consider the simple network of Fig. 3 which

has served as our vehicle thus far, and suppose that the weighting

of the activities is in the ratio: Y 1,2 : Y1,3 : Y2, 3 : Y2,4 : Y3,4

= 1 : 2 : 1 : 1 : 3. Then A = 8 and, for the parameters given in

Table 1 and with w = 0.10, we obtain c = (0.1x 11) -1-8 = 0.1375.

Whence El,2 : 0.1375 : = 2 l, : 0.2650 and c = 0.4125.
1,"23 =2,4 1.3 =3,4

From this point onwards, the procedure of spline approximation follows

identical lines to those of either the FDIS or the improved FDIS,

and will not be repeated.

I

':,

I

Fo .. t .4 -.----
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Figure 5 The Function C 2 ,3 (y2 ,3) =1+(3 -Y2 ,3) 2

and Its Optimal Approximating
Linear Spline (with maximum
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8- slope -5.062

7-
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0.938 1.876 2.814



141

4 >1

40

U")

-W~

CN4

-W4

(N

-r4



Table 1

Activity zj u 1 Ci (y. .)

(1,2) 0 4 3 + (4 - i 2

2

(1, 3) 0 5 4 + (5 - y ,3

(2,3) 0 3 1 + (3 - 232

(2,4) 0 4 2 + (4 - y,) 2

(3,4) 0 4 1 + (4 y ) 2

-3 4
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Table 3

T C (T H (TT s( I*C(Ts)-H (TsH Posterior
(1) (2) (1)

8 14.00 14.3667 21.00 .3667 .0262

6.75 17.4375 17.6992 27.25 .2617 .0150

4 34.6250 35.0719 48.00 .4469 .0129

() Opt. solution of quadratic function

C-) Opt. solution of FDIS

(3) Opt. solution of "crude" linear approximation

between Z.. and u..1] 1]

Interval Width

13.2667 < C (8) < 14.0308 0.7641

16.5992 < C (6.75) < 17.5338 0.9346

33.9719 < C (4) < 34.7203 0.7484

4

'I
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Table 5 Improved PDIS for Activity (2,3)

k-i k -k -k

k yy y C'(y)

1 0 0.75 0.375 -5.25

2 0.75 1.50 1.125 -3.750

3 1.50 2.25 1.875 -2.250

4 2.25 3.00 2.625 -0.750

( u2 ,3
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Table 8 Parameters of Network Under
C(y) = a/(b + ry)

Activity U.. a.. b.. r..13 3 13 1] 13

(1,2) 0 4 57 3 4

(1,3) 0 5 116 4 5

(2,3) 0 3 10 1 3

(2,4) 0 4 36 2 4

(3,4) 0 4 17 1 4

1 '

4_p



if

Table 9 Forward Spline for 0 0.22,

Activity (2,3)

k -k k k

k y y m

0 0.00

1 0.126214 0.058052 -21.760562 0

2 0.340470 0.223124 -10.765040

3 0.748720 0.520535 - 4.571900 E0

4 1.681883 1.143343 - 1.528651 E0

5 3.00 2.258459 - 0.496225 0.0816

(4.659654)

k
yk kth knot value

-ky : kth value of point of max. error

k -k
m : slope C'(y) evaluated at y

(The last number in parenthesis is the original knot if
the value of y were not bounded.)
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Table 10 Backward Spline with c0  0.22,

Activity (2,3)

k -k k k

k y y m

0 3.00

1 1.211247 1.935700 -0.647425 C0

2 0.554096 0.837438 -2.431836 £0

3 0.241950 0.381176 -6.529248 C0

4 0.069616 0.148133 -14.379588 C0

S5 0.00 0.013118 -27.771252 0.355976

(-0.035459)

LI

.1
"i -,-



Table 11 Forward Spline for c 0.192373,

Activity (2,3)

k -k k kk y y m

0 0.00

1 0.115999 0.053678 -22.255222

2 0.305046 0.202245 -11.620695

3 0.644340 0.456683 - 5.340799 £

4 1.348390 0.948921 - 2.027357 F 1

5 3.00 2.034312 - 0.594628 0.166357

(3. 214 74 1)



Table 12 Forward Spline for E2 =0.187169,

Activity (2,3)

~k -k k k
kyy mf

0 0

1 0.114035 0.05281 -22.352924 £ 2

2 0.298424 0.198285 -11.794044 £2

3 0.625641 0.445023 - 5.502014 E£2

4 1.292741 0.915411 - 2.137625 £2

5 3.00 1.994809 - 0.614978 0.186414

(3. 005834)



Table 13 Forward Spline for 3= 0.187018,

Activity (2,3)

ky -k mk k

0 0.00

1 0.113978 0.052806 -22.355783 E 3

2 0.298232 0.198180 -11.799138 (3

3 0.625102 0.444686 - 5.506778 E 3

4 1.291157 0.914452 - 2.140912 E 3

5 3.00 1.993678 - 0.615576 E

(3.000008) (Deviation < 10- 5

I
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Table 15 FDIS Approximationi for C(y) a,/(b+r>')

T S 8 T = 6.75 T = 4.00

FDIS Cost 12.5729 13.8444 20.7589

Yl,2 4.0 2. 750 1 .P600

Y1,3 5.0 4.96784 3.1512

Y2,3 2.21784 2.21874 1.2912

Y2,4 4.0 4.00 2.139q

Y3,4 1.78216 1.78216 0.84876

11.6528 C (8) < 12.3980

12.9243 < C*(6.75) < 13.4917

19.8388 '_ C*(4.0) < 21.6"42
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